Abstract

Nkx2.2 encodes a homeodomain transcription factor required for the correct specification and/or differentiation of cells in the pancreas, intestine, and central nervous system (CNS). To follow the fate of cells deleted for Nkx2.2 within these tissues, we generated Nkx2.2:lacZ knockin mice using a recombination-mediated cassette exchange (RMCE) approach. Expression analysis of lacZ and/or β-galactosidase in Nkx2.2(lacZ/+) heterozygote embryos and adults demonstrates that lacZ faithfully recapitulates endogenous Nkx2.2 expression. Furthermore, the Nkx2.2(lacZ/lacZ) homozygous embryos display phenotypes indistinguishable from the previously characterized Nkx2.2(-/-) strain. LacZ expression analyses in the Nkx2.2(lacZ/lacZ) homozygous embryos indicate that Nkx2.2-expressing progenitor cells within the pancreas are generated in their normal numbers and are not mislocalized within the pancreatic ductal epithelium or developing islets. In the CNS of Nkx2.2(lacZ/lacZ) embryos, LacZ-expressing cells within the ventral P3 progenitor domain display different migration properties depending on the developmental stage and their respective differentiation potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.