Abstract

In this paper, we develop a microfluidic device capable of generating nitric oxide (NO) gradients for cell culture using spatially controlled chemical reactions. NO plays an essential role in various biological activities, including nervous, immune, and cardiovascular systems. The device developed in this paper can control NO gradients without utilizing expensive and hazardous high purity NO gas sources or direct addition of NO donors. Consequently, the device provides an efficient, cost-effective, robust, and stable platform to generate NO gradients for cell culture studies. In the experiments, NO gradients are first characterized using a NO-sensitive fluorescence dye, and cell experiments using aortic smooth muscle cells are conducted. The results demonstrate that the device can alter the intracellular NO concentrations and further affect the Ca(2+) concentration oscillation for the cells. The device developed in this paper provides a powerful platform for researchers better study the biological roles of NO and its spatial distribution using in vitro cell models with minimal instrumentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.