Abstract

NiTi was investigated as a model system for a binary alloy where the properties strongly depend on the relative proportion of the two elements and on the grain size. The NiTi nanoparticles were generated by laser ablation in water. For the analysis of the particle size distribution, we used transmission electron microscopy and dynamic light scattering. Here, we found a broad particle size distribution (10-200 nm). Furthermore, the temperature-resolved x-ray powder diffraction and differential scanning calorimetry (DSC) were used to evaluate the phase transition behavior of the generated NiTi nanoparticles. Here, we found an interesting effect. During the heating by DSC, an austenite phase transition and a weak martensite phase transition in the NiTi nanoparticles appeared. Moreover, the phase transformation temperature was about 40 K lower than that of the bulk target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call