Abstract

Memory BIST implements March test techniques extensively for testing embedded memories on a chip. A high-complexity test algorithm like the March MSS (18N) can guarantee the detection of all unlinked static faults in SRAM. In contrast, March algorithms with lower complexity can be used to reduce test costs and chip area overhead. Still, they have poor coverage of faults identified in the nanometer process technologies. Subsequently, a balance between the fault coverage and the test cost is necessary. This paper presents a method to generate new March algorithms that provide optimum coverage on faults introduced by the nanometer process technologies. It was achieved by developing automated software to generate the new Data Background sequence and rearrange the existing March algorithms’ test operations to remove redundancies and enable the sensitization and detection of the intended faults while preserving their complexities. Comprehensive fault detection analyses were conducted to assess their fault coverages and to find any removable redundant test operations. The proposed method produced new March AZ1 and March AZ2 algorithms, with 13N and 14N complexity, respectively, that provide optimum coverage of the targeted faults. They were successfully implemented in the Memory BIST controllers, and their functionalities were validated via simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.