Abstract

The problem of estimating constant parameters from a standard vector linear regression equation in the absence of sufficient excitation in the regressor is addressed. The first step to solve the problem consists in transforming this equation into a set of scalar ones using the well-known dynamic regressor extension and mixing technique. Then, a novel procedure to generate new scalar exciting regressors is proposed. The superior performance of a classical gradient estimator using this new regressor, instead of the original one, is illustrated with comprehensive simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.