Abstract

Neural stem cells (NSCs) are defined by three necessary but not sufficient criteria: (1) self-renewable, (2) ability to generate a large number of progeny, and (3) ability to differentiate into the principal central nervous system (CNS) cell types, neurons, astrocytes, and oligodendrocytes. There are various approaches to derive neural lineages from pluripotent stem cells. It is well recognized that the chosen method of NSC derivation is critical to answering the basic biology question under investigation, to the success rate in drug discovery and to the efficacy of the therapeutic cells intended for repairing the CNS. There are three critical attributes of NSCs: (1) well-defined and stable cellular composition, (2) consistent process of perpetuation that avoids drift in composition, and (3) stable phenotype or therapeutic activity of the NSCs or their differentiated progeny. Over the past decades, we have been continuously developing consistent processes for generating stable, multipotent self-renewable NSCs from various sources. In this chapter, we report a method to generate NSCs from induced pluripotent stem cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.