Abstract

This study reveals for the first time the plasma performance required for a tokamak reactor to generate net electric power under foreseeable engineering conditions. It was found that the reference plasma performance of the ITER inductive operation mode with βN = 1.8, HH = 1.0, and fnGW = 0.85 had sufficient potential to achieve the electric break-even condition (net electric power ) under the following engineering conditions: machine major radius 6.5 m ⩽ Rp ⩽ 8.5 m, the maximum magnetic field on TF coils Btmax = 16 T, thermal efficiency ηe = 30%, and NBI system efficiency ηNBI = 50%. The key parameters used in demonstrating net electric power generation in tokamak reactors are βN and fnGW. βN ⩾ 3.0 is required for with fusion power Pf ∼ 3000 MW. On the other hand, fnGW ⩾ 1.0 is inevitable to demonstrate net electric power generation, if high temperatures, such as average temperatures of Tave > 16 keV, cannot be selected for the reactor design. To apply these results to the design of a tokamak reactor for demonstrating net electric power generation, the plasma performance diagrams on the Q vs Pf (energy multiplication factor vs fusion power) space for several major radii (i.e. 6.5, 7.5, and 8.5 m) were depicted. From these figures, we see that a design with a major radius Rp ∼ 7.5 m seems preferable for demonstrating net electric power generation when one aims at early realization of fusion energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.