Abstract

Femtosecond laser machining of crystalline Si in vacuum resulted in the formation of pillars and particles of ∼100nm in size at the wall surfaces and the periphery of the ablated hole. These structures were created at a laser fluence below the ablation threshold. The nanopillars and nanoparticles appear to grow from the target surface. The target surface near the particles showed molten features with descending height, indicating significant mass transport from the surface layer to the particles. The nanopillars and nanoparticles likely formed as a result of successive crystal growth processes including amorphization of the laser-irradiated target surface, followed by crystalline nucleation, melting of the amorphous Si surrounding the crystalline particles, and liquid Si creeping over particle surfaces leading to an increase in particle size. By repeating these processes, the particles grow in cumulative laser shots. These particles are the major debris components distributed near micron-sized holes formed at the ablation threshold fluence in vacuum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.