Abstract

We propose an efficient scheme for generating multiparticle entangled states between two arrays of nitrogen-vacancy centers that interact with two magnetically coupled carbon nanotubes, respectively. We show that through adjusting the external driving microwave fields and the dc currents flowing through the nanotube mechanical resonators, the multiparticle entanglement between the separated arrays of NV centers can be engineered and tuned dynamically. The experimental feasibility of this scheme is analyzed, as well as the method to produce the NOON states of phonon modes is presented using the generated multiparticle entangled states. This scheme may have interesting applications for quantum information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call