Abstract
AbstractMultiband chorus waves, where the frequency of upper band chorus is about twice that of lower band chorus, have recently been reported based on THEMIS observations. The generation of multiband chorus waves is attributed to the mechanism of lower band cascade, where upper band chorus is excited via the nonlinear coupling process between lower band chorus and the associated density mode with the frequency equal to that of lower band chorus. In this letter, with a one‐dimensional (1‐D) particle‐in‐cell (PIC) simulation model, we have successfully reproduced multiband chorus waves. During the simulation, the significant density fluctuation is driven by the fluctuating electric field along the wave vector of the pump wave (lower band chorus), which can be directly observed in this self‐consistent plasma system. Then, the second harmonic of the pump whistler‐mode wave (upper band chorus) is generated. After quantitatively analyzing resonant conditions among wave numbers, we can confirm that the generation is caused due to the coupling between the pump wave and the density fluctuation along its wave vector. The third harmonic can also be excited through lower band cascade if the pump whistler‐mode wave has a sufficiently large amplitude. Our simulation results not only provide a theoretical support to the mechanism of lower band cascade to generate multiband chorus but also propose a new pattern of evolution for whistler‐mode waves in the Earth's magnetosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.