Abstract

In this paper, two photonic vector modulator (PVM) architectures are presented, and their use in generating multi-gigabit-per-second M-ary quadrature amplitude modulation/M-ary phase shift keying modulated RF carriers in the millimeter-wave frequency regime is experimentally demonstrated. First, a highly scalable photonic quadrature amplitude modulation (QAM) architecture based on vector summation and dispersive delay lines, which directly generate multilevel signals from parallel in-phase and quadrature components, is proposed and experimentally demonstrated by generating up to 3-Gb/s quadrature phase shift keying (QPSK), four-level amplitude shift keying, and eight-level QAM at 39-GHz-modulated carriers. The possibility of also detecting the baseband components is shown, which allows the simultaneous feeding of baseband/RF signals over the same infrastructure. This architecture is limited to a certain length of fiber, as the quadrature condition is obtained for a certain aggregated dispersion. To overcome this limitation, a second PVM architecture is proposed, which is based on the use of two Mach-Zehnder modulators in parallel and an optical delay line to obtain the quadrature condition. The generation of a 2-Gb/s QPSK signal is experimentally demonstrated, including a 1-km standard single-mode-fiber transmission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call