Abstract

Monodisperse microspheres of reconstituted silkworm cocoon silk were produced using a glass capillary-based microfluidic system and by identifying an appropriate solvent/nonsolvent fluid system. The microspheres can be produced to a range of different diameters depending on the system flow rates and have a nearly homogeneous size distribution. The silk microspheres exhibit a unique core--shell architecture and have a largely beta-sheet structure, as measured by infrared spectroscopy. Mechanical characterization was performed with AFM nanoindentation and indicates that the microspheres are unexpectedly soft for a silk material. Because silk is well established as biocompatible and biodegradable, we anticipate that these silk microspheres could have particular utility in drug delivery and controlled release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call