Abstract

The use of black box machine learning models whose decisions cannot be understood limits the acceptance of predictions in interdisciplinary research and camouflages artificial learning characteristics leading to predictions for other than anticipated reasons. Consequently, there is increasing interest in explainable artificial intelligence to rationalize predictions and uncover potential pitfalls. Among others, relevant approaches include feature attribution methods to identify molecular structures determining predictions and counterfactuals (CFs) or contrastive explanations. CFs are defined as variants of test instances with minimal modifications leading to opposing predictions. In medicinal chemistry, CFs have thus far only been little investigated although they are particularly intuitive from a chemical perspective. We introduce a new methodology for the systematic generation of CFs that is centered on well-defined structural analogues of test compounds. The approach is transparent, computationally straightforward, and shown to provide a wealth of CFs for test sets. The method is made freely available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.