Abstract

The acting slip mechanism for the generation of misfit dislocations in diamond-type–semiconductor heterostructures is investigated with transmission electron microscopy. It is shown that dissociation of the 60°-mixed dislocations can lead to a difference in strain accommodation for tensile and compressive strain. A strain/thickness relation is obtained from the energy expression for nucleation of half-loops. This relation is compared with other theoretical relations and with experimental strain data for Si/GaP(001) and In0.07Ga0.93As/GaAs(001) , measured with transmission electron microscopy and ion blocking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.