Abstract

Silicon carbide (SiC) is heavily used in the industry due to its resistance to chemical wear and excellent mechanical properties such as high hardness and high stiffness. However, these properties make it difficult to produce micro and nanostructures on the surface of SiC by conventional methods. In this study, high-density microcones that protrude ~ 10 μm above the initial surface have been fabricated by nanosecond pulsed Nd:YAG laser irradiation (λ = 532 nm) on reaction-bonded SiC. Geometrically aligned cones were also fabricated by modifying the laser scanning path, and effect of different parameters such as pulse frequency, laser fluence was studied. It was observed that the surface morphology of microcones was affected by the pulse width and beam overlap. X-ray spectroscopy and Raman spectroscopy showed that the microcones were mainly composed of silicon. Formation of these cone structures made the surface highly superhydrophilic with a contact angle of ~ 0°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.