Abstract

A batch experiment was conducted to observe the liberation of micro- and nano-sized plastic particles and plastic additive-originated organic compounds from poly(vinyl chloride) under radiation-free ambient conditions. The weathering of PVC films in deionized water resulted in isolated pockets of surface erosion. Additional ●OH from Fenton reaction enhanced PVC degradation and caused cavity erosion. The detachment of plastic fragments from the PVC film surfaces was driven by autocatalyzed oxidative degradation. Over 90% of micro-sized plastic particles were <60 μm in length. The detached plastic fragments underwent intensified weathering, which involved strong dehydrochlorination and oxidative degradation. Further fragmentation of micro-sized particles into nano-sized particles was driven by oxidative degradation with complete dehydrochlorination being achieved following formation of nanoplastics. 20 organic compounds released from the PVC films into the solutions were identified. And some of them can be clearly linked to common plastic additives. In the presence of additional ●OH, the coarser nanoplastic particles (>500 nm) tended to be rapidly disintegrated into finer plastic particles (<500 nm), while the finest fraction of nanoplastics (<100 nm) could be completely decomposed and disappeared from the filtrates. The micro(nano)plastics generated from the PVC weathering were highly irregular in shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.