Abstract

Neisseria gonorrhoeae employs high-affinity metal acquisition systems to obtain necessary nutrients, such as iron (Fe) and zinc (Zn) from the environment. Because growth and replication depend upon successful metal acquisition, these high-affinity uptake systems are important virulence factors. Expression of metal acquisition systems is tightly controlled and preferentially expressed under low-metal conditions. Therefore, in order to optimally produce these transport proteins and study them in vitro, growth media must be deployed that mimic low-metal conditions. This chapter describes the chelators, media, and culturing conditions that can generate low-metal in vitro growth conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.