Abstract

The dynamics of intense ultra-low-frequency (ULF) activity during three successive strong magnetic storms during 29–31 October 2003 are considered in detail. The spatial structure of Pc5 waves during the recovery phases of these storms is considered not only from the perspective of possible physical mechanisms, but as an important parameter of the ULF driver of relativistic electrons. The global structure of these disturbances is studied using data from a worldwide array of magnetometers and riometers augmented with data from particle detectors and magnetometers on board magnetospheric satellites (GOES, LANL). The local spatial structure is examined using the IMAGE magnetometers and Finnish riometer array. Though a general similarity between the quasi-periodic magnetic and riometer variations is observed, their local propagation patterns turn out to be different. To interpret the observations, we suggest a hypothesis of coupling between two oscillatory systems—a magnetospheric magnetohydrodynamic (MHD) waveguide/resonator and a system consisting of turbulence + electrons. We propose that the observed Pc5 oscillations are the result of MHD waveguide excitation along the dawn and dusk flanks of the magnetosphere. The magnetospheric waveguide turns out to be in a meta-stable state under high solar wind velocities, and quasi-periodic fluctuations of the solar wind plasma density stimulate the waveguide excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.