Abstract

Megaelectronvolt (MeV) ion beams with low divergence (10°) are experimentally generated from a thin foil irradiated by an ultrahigh-contrast laser at a peak intensity of ∼1018 W/cm2. The high-contrast (∼1011) laser is obtained with a pulse cleaner based on noncollinear optical-parametric amplification and second-harmonic generation processes. The effects of the foil density, foil thickness, as well as the density gradients at the front and back sides of the foil are investigated with two-dimensional particle-in-cell simulations. The beam parameters of maximum energy and divergence strongly depend on the density gradients at the back side of the foil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.