Abstract

A two-dimensional (2D) numerical model is developed for the wave simulation and propagation in a wave flume. The fluid flow is assumed to be viscous and incompressible, and the Navier-Stokes and continuity equations are used as the governing equations. The standard k-ɛ model is used to model the turbulent flow. The Navier-Stokes equations are discretized using the staggered grid finite difference method and solved by the simplified marker and cell (SMAC) method. Waves are generated and propagated using a piston type wave maker. An open boundary condition is used at the end of the numerical flume. Some standard tests, such as the lid-driven cavity, the constant unidirectional velocity field, the shearing flow, and the dam-break on the dry bed, are performed to valid the model. To demonstrate the capability and accuracy of the present method, the results of generated waves are compared with available wave theories. Finally, the clustering technique (CT) is used for the mesh generation, and the best condition is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.