Abstract

The Fischer–Tropsch synthesis (FTS) for the production of widely distributed hydrocarbons through the catalytic hydrogenation of carbon monoxide (CO) has been intensively and extensively explored. This is attributable to its immense theoretical as well as practical importance. Naturally, such exploration would be greatly facilitated if the feasible or dominant catalytic pathways (mechanisms) of FTS can be determined. The stoichiometrically feasible and independent catalytic pathways (IP i 's) of FTS have been exhaustively identified via the rigorous graph–theoretic method based on P-graphs (process graphs). The most extensive set of elementary reactions available, which numbers 26, has yielded 24 IP i 's in less than 1 s on a PC. The plausibly dominant pathways have been selected from the stoichiometrically feasible pathways through the analysis of their activation energies. Naturally, the dominant pathway or pathways need ultimately be discriminated among these plausibly dominant pathways via various means, e.g., in situ spectroscopic measurements of intermediates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.