Abstract
Phylogenetic networks provide a mathematical model to represent the evolution of a set of species where, apart from speciation, reticulate evolutionary events have to be taken into account. Among these events, lateral gene transfers need special consideration due to the asymmetry in the roles of the species involved in such an event. To take into account this asymmetry, LGT networks were introduced. Contrarily to the case of phylogenetic trees, the combinatorial structure of phylogenetic networks is much less known and difficult to describe. One of the approaches in the literature is to classify them according to their level and find generators of the given level that can be used to recursively generate all networks. In this paper, we adapt the concept of generators to the case of LGT networks. We show how these generators, classified by their level, give rise to simple LGT networks of the specified level, and how any LGT network can be obtained from these simple networks, that act as building blocks of the generic structure. The stochastic models of evolution of phylogenetic networks are also much less studied than those for phylogenetic trees. In this setting, we introduce a novel two-parameter model that generates LGT networks. Finally, we present some computer simulations using this model in order to investigate the complexity of the generated networks, depending on the parameters of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.