Abstract

The blood–brain barrier (BBB) is a major hurdle in drug discovery for central nervous system (CNS) disorders. Particularly, mid-size molecules and macromolecules (e.g., peptides and antibodies) that modulate intractable drug targets such as protein-protein interaction are prevented from entering the CNS via BBB. The receptor-mediated transcytosis (RMT) pathway has been examined to deliver these molecules to CNS. Among the receptors, low-density lipoprotein receptor-related protein 1 (LRP1) has been emerged as one of the promising receptors for RMT. Although several LRP1-binding peptides have been reported, no drugs are available on the market based on the combination of reported LRP1-binding peptides and therapeutic molecules. One reason may be stability in vivo and BBB-permeability of the peptides. The present study aims to identify a novel LRP1-binding peptide for RMT, where we successfully generated a 15-mer cyclic peptide named KS-487. It explicitly bound to Cluster 4 domain of LRP1 with the binding EC50 value of 10.5 nM and was relatively stable in mouse plasma within 24 h. Moreover, its high BBB permeability was demonstrated using in vitro rat and monkey BBB models. By 24 h incubation, 13% and 17% of the added amount of KS-487 (10 μM) penetrated rat BBB and monkey BBB, respectively. KS-487 would be a potential candidate for the LRP1-mediated transcytosis-based drug delivery to CNS, as these values were significantly higher than those of the known LRP1-binding peptides—Angiopep-2 and L57.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call