Abstract

We theoretically investigated the possibility of generating attosecond pulses by means of plasmonic field enhancement induced in a nano-structured metallic funnel-waveguide. This study was motivated by our recent experimental demonstration of ultrashort extreme-ultraviolet (EUV) pulses using the same type of three-dimensional waveguides. Here, with emphasis on generation of isolated attosecond pulses, the finite-domain time-difference method was used to analyze the funnel-waveguide with respect to the geometry-dependent plasmonic features such as the field enhancement factor, enhanced plasmonic field profile and hot-spot location. Then an extended semi-classical model of high-order harmonic generation was adopted to predict the EUV spectra generated from the funnel-waveguide in consideration of the spatial inhomogeneity of the plasmonic field within the hot-spot volume. Our simulation finally proved that isolated attosecond pulses can be produced at fast repetition rates directly from a few-cycle femtosecond laser or by synthesizing a two-color laser consisting of two multi-cycle pulses of cross-polarized configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call