Abstract

A method for the generation of intense pulsed low-kinetic-energy molecular beams is described. The method is based on the formation of a cold (≈77 K) pressure shock as a result of interaction between an intense pulsed gas-dynamically cooled molecular beam with a solid surface. The pressure shock is used as a source of a secondary beam for generating low-energy molecules. The suggested method was used to obtain intense molecular beams of H2, He, CH4, N2, and Kr with kinetic energies lower than or equal to 10 meV and H2/Kr and He/Kr molecular beams with kinetic energies of H2 and He molecules lower than 1 meV. The energy (velocity) of molecules in low-energy beams can be controlled by varying the intensity of the initial beam or temperature in the pressure shock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call