Abstract

Melanoma is one of the most severe skin cancers, derived from melanocytes. Among various therapies for melanoma, adoptive immunotherapy using tumor-infiltrating lymphocytes/chimeric antigen receptor-T cells (TCs) is advanced in recent years; however, the efficacy is still limited, and major challenges remain in terms of safety and cell supply. To solve the issues of adoptive immunotherapy, we utilized induced pluripotent stem cells (iPSCs), which have an unlimited proliferative ability and various differentiation capability. First, we monoclonally isolated CD8+ TCs specifically reactive with NY-ESO-1, one of tumor antigens, from the melanoma patient's monocytes after stimulated with NY-ESO-1 peptide by manual procedure, and cultured NY-ESO-1-specific TCs until proliferated and formed colonies. iPSCs were consequently generated from colony-forming TCs by exogenous expression of reprogramming factors using Sendai virus vector. After the RAG2 gene in TC-derived iPSCs (T-iPSCs) was knocked out for preventing T-cell receptor (TCR) rearrangement, T-iPSCs were re-differentiated into rejuvenated cytotoxic TCs. We confirmed that TCR of T-iPSC-derived TC was maintained as the same of original TCs. In conclusion, T-iPSCs have a potential to be an unlimited cell source for providing cytotoxic TCs. Our study could be a "touchstone" to develop iPSC-based adoptive immunotherapy for the treatment of melanoma for the future clinical use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call