Abstract
In this paper, we present a methodology based on generative adversarial network architecture to generate synthetic data sets with the intention of augmenting continuous glucose monitor data from individual patients. We use these synthetic data with the aim of improving the overall performance of prediction models based on machine learning techniques. Experiments were performed on two cohorts of patients suffering from type 1 diabetes mellitus with significant differences in their clinical outcomes. In the first contribution, we have demonstrated that the chosen methodology is able to replicate the intrinsic characteristics of individual patients following the statistical distributions of the original data. Next, a second contribution demonstrates the potential of synthetic data to improve the performance of machine learning approaches by testing and comparing different prediction models for the problem of predicting nocturnal hypoglycemic events in type 1 diabetic patients. The results obtained for both generative and predictive models are quite encouraging and set a precedent in the use of generative techniques to train new machine learning models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.