Abstract

Immune response results from a complex interplay between the antigen non-specific innate immune system and the antigen specific adaptive immune system. The immune system is a constant balance in maintaining tolerance to self-molecules and reacting rapidly to pathogens. Dendritic cells (DCs) are powerful professional antigen presenting cells that link the innate immune system to the adaptive immune system and balance the adaptive response between self and non-self. Depending on the maturation signals, immature dendritic cells can be selectively stimulated to differentiate into immunogenic or tolerogenic DCs. Immunogenic dendritic cells provide proliferation signals to antigen-specific T cells for clonal expansion; while tolerogenic dendritic cells regulate tolerance by antigen-specific T-cell deletion or clonal expansion of regulatory T-cells. Due to this unique property, dendritic cells are highly sought after as therapeutic agents for cancer and autoimmune diseases. Dendritic cells can be loaded with specific antigens in vitro and injected into the human body to mount a specific immune response both immunogenic and tolerogenic. This work presents a means to generate in vitro from monocytes, immature monocyte derived dendritic cells (moDCs), tolerogenic and mature moDCs that differ in surface marker expression, function and metabolic phenotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.