Abstract

Hexavalent chromium (Cr(VI)) was activated by ultraviolet-A light-emitting diode (UVA-LED), resulting in efficient removal of various pollutants, including dye, pharmaceuticals, and pesticides, with pseudo-first-order rate constants of 0.0610-0.159min-1. Comparatively, UVA-LED or Cr(VI) alone barely degraded selected pollutants. Both HO• and Cr(V) were produced in the UVA-LED/Cr(VI) system based on scavenging and probing experiments, UV-visible and electron spin resonance spectra analysis. HO• was demonstrated to be the dominant reactive species via stepwise regeneration of Cr(V) to Cr(VI). The quantum yield of HO• was determined to be 7.79×10-4 mol Es-1 at a Cr(VI) dosage of 0.5mM and pH of 6.0. Additionally, the degradation efficiency of sulfamethoxazole (SMX) as a model compound decreased linearly as UVA-LED wavelengths increased from 365 to 405nm, while SMX was barely degraded at visible light irradiation wavelength ranges (449-505nm). SMX degradation efficiency increased from 71.0 % to 97.5 % as Cr(VI) dosage increased from 0.05 to 0.7mM. pH displayed a negative impact on SMX degradation with its removal efficiency decreasing from 99.4 % to 13.3 % as pH increased from 3.0 to 9.0. This study first reported that HO• was generated via activation of Cr(VI) by UVA-LED, which is instructive for the removal of pollutants co-existed in chromium-containing wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.