Abstract

The generation of hydrogen gas from the surface of solidified shell of carbon steel was confirmed by the experiments of both collecting gas from shell surface using the sintered chill plate made of stainless steel and measuring temperature in the copper chill plate at initial stage of solidification. The hydrogen gas existed in collected gas and the amount of hydrogen gas increased with increasing hydrogen content in molten steel. The temperature in chill plate became high because the ratio of hydrogen gas of which thermal conductivity was large existed in the gap between shell and chill plate and the heat transfer from shell to chill plate became large when the hydrogen content in molten steel was high. When the hydrogen gas generated from shell surface blocks flow of mold flux into the gap, the possibility of sticker breakout in continuous casting would increase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call