Abstract
The envelope glycoproteins are major targets for HIV vaccines. The N-terminal and the C-terminal regions of the gp41 interact to form six helix bundles that are responsible for the fusion between the viral and the target cell membranes. Monoclonal antibodies (Abs) able to disrupt the formation of this complex or to interfere with it could inhibit HIV fusion. Most of the well described gp41-specific broadly neutralizing Abs target conformational epitopes within the membrane proximal region of gp41 (MPER) and recognize linear peptides. In this study, a stable human transfected cell line, expressing a well folded heptad repeat regions 1 (HR1)/HR2 postfusion complex was developed. Transfected cells were highly immunogenic in mice and allowed the generation of 40 complex specific B-cell clones. Three of them were able to neutralize efficiently both HIV-1 laboratory adapted virus and primary isolates from different clades. Two neutralizing Abs (Nabs) FC-2 and FC-3 bound to a recombinant folded gp140 and blocked with a high potency HR1/HR2 fusion complex formation in vitro. The conformational epitopes of the three antibodies are different to 2F5, 4E10, D5 or NC-1 and mainly located in the MPER region. Abs were capable of inhibiting syncytium formation by blocking spatial interactions between HR1 and HR2 regions. These findings suggest that immunogenicity of gp41 is achievable and that the use of a fusion complex expressing human cell line is a highly potent immunogen to generate neutralizing antibodies against gp41 envelope glycoprotein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.