Abstract

Somatosensory low threshold mechanoreceptors (LTMRs) sense innocuous mechanical forces, largely through specialized axon termini termed sensory nerve endings, where the mechanotransduction process initiates upon activation of mechanotransducers. In humans, a subset of sensory nerve endings is enlarged, forming bulb-like expansions, termed bulbous nerve endings. There is no in vitro human model to study these neuronal endings. Piezo2 is the main mechanotransducer found in LTMRs. Recent evidence shows that Piezo1, the other mechanotransducer considered absent in dorsal root ganglia (DRG), is expressed at low level in somatosensory neurons. We established a differentiation protocol to generate, from iPSC-derived neuronal precursor cells, human LTMR recapitulating bulbous sensory nerve endings and heterogeneous expression of Piezo1 and Piezo2. The derived neurons express LTMR-specific genes, convert mechanical stimuli into electrical signals and have specialized axon termini that morphologically resemble bulbous nerve endings. Piezo2 is concentrated within these enlarged axon termini. Some derived neurons express low level Piezo1, and a subset co-express both channels. Thus, we generated a unique, iPSCs-derived human model that can be used to investigate the physiology of bulbous sensory nerve endings, and the role of Piezo1 and 2 during mechanosensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.