Abstract

Improved spectral resolutions were achieved in laser-induced breakdown spectroscopy (LIBS) through generation of high-temperature and low-density plasmas. A first pulse from a KrF excimer laser was used to produce particles by perpendicularly irradiating targets in air. A second pulse from a 532 nm Nd:YAG laser was introduced parallel to the sample surface to reablate the particles. Optical scattering from the first-pulse plasmas was imaged to elucidate particle formation in the plasmas. Narrower line widths (full width at half maximums: FWHMs) and weaker self-absorption were observed from time-integrated LIBS spectra. Estimation of plasma temperatures and densities indicates that high temperature and low density can be achieved simultaneously in plasmas to improve LIBS resolutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call