Abstract
Coherent population trapping (CPT) is an interesting technique for the development of compact atomic frequency references. We describe an innovating laser source for the production of the two cross-polarized coherent laser fields which are necessary in CPT-based atomic clocks. It relies on the dual-frequency and dual-polarization operation of an optically-pumped vertical external-cavity semiconductor laser. This particular laser emission is induced by intracavity birefringent components which produce a controllable phase anisotropy within the laser cavity and force emission on two cross-polarized longitudinal modes. The laser emission is tuned at the Cs D<sub>2</sub> line (λ = 852.14 nm), and the frequency difference Δν between the two laser modes is tunable in the microwave range. The laser line wavelength is stabilized onto an atomic hyperfine transition, and concurrently the frequency difference is locked to an ultra-low noise RF oscillator at 9.2 GHz. The high spectral purity of the optically-carried microwave signal resulting from the beatnote of the two cross-polarized laser lines is assessed through its narrow spectral linewidth (<30 Hz) as well as its low phase noise (≤ -100 dBrad<sup>2</sup>/Hz). The performance of this laser source is already adequate for the interrogation of atoms in a CPT atomic clock, and should result in an estimated relative stability of 3.10<sup>-13</sup>τ<sup>-1/2</sup> – one order of magnitude better than commercial atomic clocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.