Abstract

The frequency conversion of laser radiation in plasma created by pulses of different durations under conditions of the chirp variation of the radiation to be converted is investigated. It is shown that the chirp variation of the laser pulse during the generation of higher-order radiation harmonics of the femtosecond laser leads to a considerable change in the brightness, wavelength shift, and maximal order of generated harmonics. The long-and short-wavelength shifts of harmonics observed in these studies are attributed to the manifestation of a considerable concentration of free charge carriers in the plasma, as well as the self-modulation of the laser pulse. The generation of plasma by pulses whose durations vary from 160 fs to 20 ns is considered and it is shown that the generation efficiency of harmonics depends to a greater extent on the energy of the heating prepulse than on its intensity on the surface of a target to be ablated. The effect that the atomic number of the target has on the formation of optimal plasma at different delays between the heating prepulse and the femtosecond pulse to be converted is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call