Abstract

Cold explosive emission cathodes, in which a plasma serves as an emitting surface, are used to generate relativistic electron beams with a high current density in a magnetic field. The plasma parameters change within a microsecond, thereby significantly changing the geometry of the electron beam. This paper is a review of techniques for stabilizing the geometry of microsecond high-current relativistic electron beams. It is shown that only a transverse-blade explosive emission cathode in a magnetically insulated diode can generate such beams (500 keV, 3 kA) the current density profile and electron trajectory pitch factor of which remain constant for a microsecond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call