Abstract

We study the purity of correlated photon pairs generated in a dispersion-shifted fiber at various temperatures. The ratio of coincidence to accidental-coincidence counts greater than 100 can be obtained as the fiber is cooled to liquid-nitrogen temperature (77 K). We then generate polarization-entangled photon pairs by using a compact counterpropagating scheme. Two-photon interference with visibility >98% and Bell's inequality violation by >8 standard deviations of measurement uncertainty are observed at 77 K, without subtracting the accidental-coincidence counts due to background Raman photons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call