Abstract

It is impractical to achieve the desired combination of power and bandwidth from conventional electromechanical acoustic sources. However, these characteristics can be achieved by the use of pulsed power technology to generate high-power ultrasound (HPU). High-voltage pulses induce the electrical breakdown of water and the resulting bubble formation and collapse produce acoustic waves of high power and frequency. The dynamics of spark generated bubbles are formulated to predict the development of the bubble radius with time and an experimental system to produce a consistent source of spherically symmetric HPU acoustic waves is described. Pressure pulses due to both bubble formation and collapse were detected and, although their relative amplitudes varied, their frequency spectra did not differ significantly. The amplitude of the acoustic output rises sharply for applied pulse energies up to /spl sim/25 J but the effect saturates indicating little gain and poor efficiency by using high-energy pulses. Variation of the source topology in the form of the electrode separation was found to be the most important factor in the acoustic output. The detected HPU increased as the source became larger but as the two-thirds power of the electrode separation, thereby showing progressively diminishing enhancement. The frequency content of the acoustic signal did not appear to vary with either applied pulse energy or the electrode separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.