Abstract

ABSTRACTGeobacter sulfurreducens is commonly employed as a model for the study of extracellular electron transport mechanisms in the Geobacter species. Deletion of pilB, which is known to encode the pilus assembly motor protein for type IV pili in other bacteria, has been proposed as an effective strategy for evaluating the role of electrically conductive pili (e-pili) in G. sulfurreducens extracellular electron transfer. In those studies, the inhibition of e-pili expression associated with pilB deletion was not demonstrated directly but was inferred from the observation that pilB deletion mutants produced lower current densities than wild-type cells. Here, we report that deleting pilB did not diminish current production. Conducting probe atomic force microscopy revealed filaments with the same diameter and similar current-voltage response as e-pili harvested from wild-type G. sulfurreducens or when e-pili are expressed heterologously from the G. sulfurreducens pilin gene in Escherichia coli. Immunogold labeling demonstrated that a G. sulfurreducens strain expressing a pilin monomer with a His tag continued to express His tag-labeled filaments when pilB was deleted. These results suggest that a reinterpretation of the results of previous studies on G. sulfurreducens pilB deletion strains may be necessary.IMPORTANCE Geobacter sulfurreducens is a model microbe for the study of biogeochemically and technologically significant processes, such as the reduction of Fe(III) oxides in soils and sediments, bioelectrochemical applications that produce electric current from waste organic matter or drive useful processes with the consumption of renewable electricity, direct interspecies electron transfer in anaerobic digestors and methanogenic soils and sediments, and metal corrosion. Elucidating the phenotypes associated with gene deletions is an important strategy for determining the mechanisms for extracellular electron transfer in G. sulfurreducens. The results reported here demonstrate that we cannot replicate the key phenotype reported for a gene deletion that has been central to the development of models for long-range electron transport in G. sulfurreducens.

Highlights

  • IMPORTANCE Geobacter sulfurreducens is a model microbe for the study of biogeochemically and technologically significant processes, such as the reduction of Fe(III) oxides in soils and sediments, bioelectrochemical applications that produce electric current from waste organic matter or drive useful processes with the consumption of renewable electricity, direct interspecies electron transfer in anaerobic digestors and methanogenic soils and sediments, and metal corrosion

  • G. sulfurreducens has served as a convenient model microbe for other extracellular electron transfer processes, such as Fe(III) oxide reduction, direct interspecies electron transfer (DIET), and corrosion [3,4,5]

  • In order to further evaluate the impact of deleting pilB, the gene studied previously [23, 32] was deleted from the type strain of G. sulfurreducens, which is the same strain in which pilB was deleted in previous studies [23, 32].This strain was designated G. sulfurreducens strain PCA/DPilB

Read more

Summary

Introduction

IMPORTANCE Geobacter sulfurreducens is a model microbe for the study of biogeochemically and technologically significant processes, such as the reduction of Fe(III) oxides in soils and sediments, bioelectrochemical applications that produce electric current from waste organic matter or drive useful processes with the consumption of renewable electricity, direct interspecies electron transfer in anaerobic digestors and methanogenic soils and sediments, and metal corrosion. Such strains properly express outer-surface cytochromes [20, 21, 25] but are defective in Fe(III) oxide reduction and DIET and produce low current densities [20, 21, 23, 31], which are results consistent with e-pili serving as the primary conduit for long-range electron transport [4, 16].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.