Abstract

Fabrication of high aspect ratio (HAR) complex micro features on high strength temperature resistant (HSTR) alloys is challenging by any conventional or non-conventional machining methods. In this study blind, HAR and complex micro features have been fabricated by micro electrochemical milling (MEM) on HSTR Cobalt alloy (Haynes-188) introducing a new strategic approach with novel flushing technique which could get rid of the need of pulsed DC power supply. Multiphysics simulation of the rotating micro-tool at different rpm and its impact on effective sludge removal has been analyzed and verified experimentally. In this study, most influencing parameters of MEM like voltage, feed rate, rpm of tool and milling layer depth have been selected to investigate their effects on the machining responses like width overcut, machined depth and surface roughness on Haynes-188 alloy. Comparison has also been made with constant and pulsed DC power source to know the influence of these process parameters on the MEM responses. Finally, several linear and non-linear blind, HAR (AR > 11) and intricate micro features have been fabricated successfully on cobalt alloy at the most suitable parametric combination, i.e., 7.5 V of machining voltage, feed rate of 0.3 mm/min, and tool rotation of 750RPM with 0.5 M of NaNO3 electrolyte.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call