Abstract

Graphite particle generation by interpebble abrasion and by abrasion of pebbles with the containment vessel during operation of a pebble bed reactor is an issue of interest in the safety analysis of this class of very high temperature reactor. To understand particle generation, we have constructed an apparatus to generate graphite particles from preformed graphite hemispheres under rotational/spinning abrasive loading. We have initially used commercial-grade graphites in our experiments and have generated size distributions for the abraded particles, determined particle shapes, and measured the particle surface areas, pore volumes, and pore volume distributions of particles produced during abrasion of graphite surfaces under different conditions. The size distributions were studied using an Aerodynamic Particle Sizer™ and a Scanning Mobility Particle Sizer.™ Most of the particles observed were in the range from 18.1 to 600 nm in diameter. The scanning electron micrographs showed that the particles tend to be irregular in shape and porous in nature. We have also conducted Brunauer-Emmett-Teller surface area and pore volume measurements that have verified the highly porous nature of the particles. The calculated surface area and open porosity for our initial measurements of the particles from this particular grade of commercial graphite were found to be 626 m2 g-1 and 68%, respectively. In addition, the average surface roughness of fresh samples was 0.966 Ra μm at the point of contact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.