Abstract

In the realm of diabetes treatment, various strategies have been tried, including islet transplantation and common drug therapies, but the limitations of these procedures and lack of responsive to the high number of patients have prompted researchers to develop a new method. In recent decades, the use of stem cells and three-dimonsional (3D) scaffold to produce insulin-secreting cells is one of the most promising new approaches. Meanwhile, human-induced pluripotent stem cells (iPSCs) propose due to advantages such as autologousness and high pluripotency in cell therapy. This study aimed to evaluate the differentiation of iPSCs into pancreatic islet insuli-producing cells (IPCs) on Silk/PES (polyethersulfone) nanofibers as a 3D scaffold and compare it with a two-dimonsional (2D) cultured group. Investigating the functional, morphological, molecular, and cellular characteristics of differentiated iPSCs on control cultures (without differentiation medium), 2D and 3D were measured by various methods such as electron microscopy, Q-PCR, immunofluorescence, western blot, and ELISA. This investigation revealed that differentiated cells on the 3D Silk/PES scaffold expressed pancreatic specific-markers such as insulin and pdx1 at higher levels than the control and 2D groups, with a significant difference between the two groups. All results of Q-PCR, immunocytochemistry, and western blot showed that IPCs in the silk/PES 3D group was more efficient than in the 2D group. In the face of these cases, the release of insulin and C-peptide in response to several concentrations of glucose in the 3D group was significantly higher than in the 2D culture. Finally, our findings displayed that optimized Silk/PES 3D scaffolds can enhance the differentiation of IPCs from iPSCs compared to the 2D culture group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.