Abstract
Although there is tremendous interest in understanding the evolutionary roles of horizontal gene transfer (HGT) processes that occur during chronic polyclonal infections, to date there have been few studies that directly address this topic. We have characterized multiple HGT events that most likely occurred during polyclonal infection among nasopharyngeal strains of Streptococcus pneumoniae recovered from a child suffering from chronic upper respiratory and middle-ear infections. Whole genome sequencing and comparative genomics were performed on six isolates collected during symptomatic episodes over a period of seven months. From these comparisons we determined that five of the isolates were genetically highly similar and likely represented a dominant lineage. We analyzed all genic and allelic differences among all six isolates and found that all differences tended to occur within contiguous genomic blocks, suggestive of strain evolution by homologous recombination. From these analyses we identified three strains (two of which were recovered on two different occasions) that appear to have been derived sequentially, one from the next, each by multiple recombination events. We also identified a fourth strain that contains many of the genomic segments that differentiate the three highly related strains from one another, and have hypothesized that this fourth strain may have served as a donor multiple times in the evolution of the dominant strain line. The variations among the parent, daughter, and grand-daughter recombinant strains collectively cover greater than seven percent of the genome and are grouped into 23 chromosomal clusters. While capturing in vivo HGT, these data support the distributed genome hypothesis and suggest that a single competence event in pneumococci can result in the replacement of DNA at multiple non-adjacent loci.
Highlights
Horizontal gene transfer (HGT) is a fundamental process in bacterial genome evolution [1]
Whereas only rarely are HGT events detected in Mycobacterium species [7], they are frequently observed in naturally transformable species such as Streptococcus pneumoniae where multilocus sequence typing (MLST) and theoretical modeling have indicated that recombination rates are 3 to 10 fold higher than
It has become clear that chronic bacterial infections often do not fit this paradigm
Summary
Horizontal gene transfer (HGT) is a fundamental process in bacterial genome evolution [1]. Analysis of whole genome sequences (WGS) of multiple isolates from a single bacterial species have revealed extensive population-wide differences among strains in multiple species [2,3,4]. The differences among strains can occur through small-scale mutations affecting only a few base pairs (substitutions, deletions, insertions) or by HGT where DNA segments from hundreds to hundreds of thousands of bases can be incorporated from another organism’s genome without the recipient being its offspring. The transfer of DNA via homologous recombination (HR) leads to the replacement of a region of the genome of a recipient cell by the corresponding region from the donor cell [5]. HR can lead to differentiation by incorporation of identical genes containing single nucleotide polymorphisms (SNPs) and/or the insertion and/or deletion of entire genes and operons. Whereas only rarely are HGT events detected in Mycobacterium species [7], they are frequently observed in naturally transformable species such as Streptococcus pneumoniae where multilocus sequence typing (MLST) and theoretical modeling have indicated that recombination rates are 3 to 10 fold higher than
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.