Abstract
The pulmonary metabolism of nilutamide, a nitroaromatic anti-androgen drug leading to pulmonary lesions in a few recipients, has been investigated in rats. Incubation of nilutamide (1 mM) with rat lung microsomes and NADPH under anaerobic conditions led to the formation of the nitro anion free radical, as indicated by ESR spectroscopy. The steady state concentration of this radical was not decreased by CO or SKF 525-A (two inhibitors of cytochrome P450), but was decreased by NADP + (10 mM) or p-chloromercuribenzoate (0.47 mM) (two inhibitors of NADPH-cytochrome P450 reductase activity). Anaerobic incubations of [ 3H]nilutamide (0.1 mM) with rat lung microsomes and a NADPH-generating system resulted in the in vivo covalent binding of [ 3H]nilutamide metabolites to microsomal proteins; covalent binding required NADPH; it was decreased in the presence of NADP + (10 mM), or in the presence of the nucleophile glutathione (10 mM), but was unchanged in the presence of carbon monoxide. Under aerobic conditions, in contrast, the nitro anion free radical was reoxidized by oxygen, and its ESR signal was not detected. Covalent binding was essentially suppressed. Instead, there was consumption of NADPH and oxygen, and production of Superoxide anion and hydogen peroxide. We conclude that nilutamide is reduced by rat lung microsomes NADPH-cytochrome P450 reductase into a nitro anion free radical. In anaerobiosis, the radical is reduced further to covalent binding species. In the presence of oxygen, in contrast, this nitro anion free radical undergoes redox cycling, with the generation of reactive oxygen species.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.