Abstract
The fixed point theory is one of the most essential techniques of applicable mathematics for solving many realistic problems to get a unique solution by using the well known Banach contraction principle. It has paved the ways for numerous extensions, generalization and development of the theory of fixed points in very diverse settings. Our intention in the present paper is to study the Kannan contraction maps defined on a controlled metric space. The generalization of the fixed point theorem for Kannan contraction on controlled metric space is investigated in this paper. We construct an iterated function system called Controlled Kannan Iterated Function System (CK-IFS) with Kannan contraction maps in a controlled metric space and use it to develop a new kind of invariant set, which is called a Controlled Kannan Attractor or Controlled Kannan Fractal (CK-Fractal). Subsequently, the collage theorem for controlled Kannan fractal is also proved. The multivalued fractals are also constructed in the controlled metric space using Kannan and Reich-type contraction maps. The newly developing iterated function system and fractal set in the controlled metric space can provide a novel direction in the fractal theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.