Abstract

Replication protein A (RPA) is an essential single-stranded DNA (ssDNA)-binding protein that sequesters ssDNA and protects it from nucleolytic degradation. The RPA-ssDNA nucleoprotein acts as a hub to recruit over two dozen DNA metabolic enzymes onto ssDNA to coordinate DNA replication, repair, and recombination. RPA functions as a heterotrimer composed of RPA70, RPA32, and RPA14 subunits and has multiple DNA-binding and protein-interaction domains. Several of these domains are connected by disordered linkers allowing RPA to adopt a wide variety of conformations on ssDNA. Here we describe a fluorescence-based tool to monitor the dynamics of selectDNA-binding domains of RPA. Noncanonical amino acids are utilized to site-specifically engineer fluorescent probes in Saccharomyces cerevisiae RPA heterologously expressed in BL21 (DE3) and its derivatives. A procedure to synthesize 4-azido-L-phenylalanine (4AZP), a noncanonical amino acid, is also described. Sites for fluorophore positioning that produce a measurable change in fluorescence upon binding to ssDNA are detailed. This fluorescence enhancement through noncanonical amino acid (FEncAA) approach can also be applied to other DNA-binding proteins to investigate the dynamics of protein-nucleic acid interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call