Abstract

Recent experimental and theoretical investigations are reviewed concerning the generation of fast charged particles and superstrong magnetic fields in the interaction of ultrashort laser pulses with solid targets. The mechanisms of generating fast charged particles in superstrong light fields of laser radiation with intensities ranging from 1017 to 1021 W cm–2 are considered. Electron acceleration due to vacuum heating, the ponderomotive potential, resonance absorption, the laser-driven wake field in the underdense part of plasma, cyclotron mechanism and some other mechanisms are thoroughly analyzed. Experimental data on the acceleration of protons and atomic ions by spatial charge fields on thin and thick solid targets are presented and theoretically interpreted. Particular attention is paid to the generation of superstrong quasistatic magnetic fields in laser plasmas and methods for measuring them under the action of various laser pulses of both femto- and picosecond durations. The possible formation of magnetic plasma configurations and magnetic plasma confinement are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.