Abstract

This paper presents the results of a study on the generation of electron beams at gas pressures ranging from 0.01 to 0.1 Torr. The fact that this range of pressures is attainable with mechanical pumps only has provoked interest in this problem. To generate an electron beam, use is made of a plasma source based on a hollow-cathode discharge in combination with a plane-parallel acceleration gap. In the given range of pressures, the peculiarities of emission and acceleration of electrons are related to the high probability of ionization of the gas in the acceleration gap and to the formation of an ion flow propagating toward the electron beam. This causes a decrease in discharge operating voltage and also an increase in plasma density in the emission region. Two types of breakdown are observed in the acceleration gap: an interelectrode breakdown and a breakdown in the plasma–electrode system. The designed electron source allows one to obtain beams of cylindrical cross section with currents of up to 1 A and energies of up to 10 keV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.