Abstract

In many practical problems such as engineering design problems, criteria functions cannot be given explicitly in terms of design variables. Under this circumstance, values of criteria functions for given values of design variables are usually obtained by some analyses such as structural analysis, thermodynamical analysis or fluid mechanical analysis. These analyses require considerably much computation time. Therefore, it is not unrealistic to apply existing interactive optimization methods to those problems. On the other hand, there have been many trials using genetic algorithms (GA) for generating efficient frontiers in multi-objective optimization problems. This approach is effective in problems with two or three objective functions. However, these methods cannot usually provide a good approximation to the exact efficient frontiers within a small number of generations in spite of our time limitation. The present paper proposes a method combining generalized data envelopment analysis (GDEA) and GA for generating efficient frontiers in multi-objective optimization problems. GDEA removes dominated design alternatives faster than methods based on only GA. The proposed method can yield desirable efficient frontiers even in non-convex problems as well as convex problems. The effectiveness of the proposed method will be shown through several numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.