Abstract

We report a droplet-based microfluidic synthetic technique to generate disk-like hydrogel beads for cell encapsulation and manipulation. Utilizing this microfluidic synthetic technique, the size of the disk-like calcium alginate (CA) hydrogel beads and the number of cells encapsulated in the disk-like CA hydrogel beads could be well controlled by individually adjusting the flow rates of reagents. As a proof-of-concept, we demonstrated that single cell (yeast cell or mammalian cell) could be successfully encapsulated into disk-like CA hydrogel beads with high cell viability. Taking advantage of the flat top/bottom surfaces of disk-like CA hydrogel beads, cell division processes in culture media were clearly observed and recorded at a desired position without rolling and moving. This facile microfluidic chip provides a feasible method for size-controlled disk-like hydrogel beads generation and cell encapsulation. It could be a promising candidate for cell division observation and quantitative biological study in lab-on-a-chip applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call